Increase in profit by 29%
Profit per Customer in the top 20 % of customer base was increased by 29 %.
Enhanced call quality monitoring
With searchable transcripts and individual feedback for call agents.
Automated topic detection
Providing more context to the sales teams and giving the customers more continuity, leading to more closed deals.
DataSentics helped us implement Natural Language Processing (NLP) into our call center, the key lead management tool for both selling and buying. We can now analyse conversations, measure sentiment, and predict business potential, increasing our efficiency and providing better service to our customers. None of this would be possible without DataSentics' expertise in applied machine learning.
Recordings of calls in a call centre contain a large quantity of information about the customers and their needs, the operators, and the communication practices in general. More and more companies realise that this data has a critical potential for advancing the operations and impact of call centres. Natural language processing uses machine learning to process and interpret text data, that can be used for customer grading (call prioritisation), operator oversight (call scripts matching, detection of challenging calls), topic detection and much more.
The Challenge
Before the NLP application, the analysis of calls at AAA Auto depended on hand-written data submitted to a CRM application by the call operators. In order to start transcribing calls and use them to their full potential, we introduced a finetuned speech-to-text technology. We wanted to improve the tools for call centre managers and use the transcripts to prioritise customers in the lost zone (=customers who were supposed to perform an action but did not, e.g., those who did not visit the branch to see a car after scheduling a meeting). We were able to do this using propensity grading based on these transcripts. Giving the salespeople at a branch office extracts of the customers’ conversations with the call centre on a relevant topic would lead to a better understanding and business continuity with the customers.
The Solution
DataSentics delivered a complex natural language processing (NLP) solution based on Azure cloud infrastructure and Databricks. The first step was to finetune the Azure Speech-to-Text service to perform best on the customer’s domain. Next, we used this service to transcribe a significant amount of their calls.
The transcripts were used as a source for NLP features predicting the customer’s tendency to buy a particular car. We developed and trained a propensity model that uses these language processing features. As it turned out, it significantly outperformed the original static grading that the client had in place up until then. This will allow our client to focus the call centre resources on the customers with the highest potential profit.
Finally, we developed and implemented an algorithm focused on detecting and searching for topics in the transcripts. This summary is meant to serve mainly the salespeople in the branches, where each customer finalises their journey during their visit, look at and potentially buy a car.
If displayed in a mobile app, the topic summary (e.g., who will be driving the car, its primary usage or whether the customer talked to competition) allows the salespeople to see the key points of the customers’ previous conversations with the call centre. They can use it to provide a personalised experience to the customer and read and listen to the relevant parts of the customer’s conversation on the relevant topic.
The Benefits
The integration of AI and Natural Language Processing into AAA Auto's call center resulted in significant benefits, including a 29% increase in customer profitability within the top 20% of the customer base, enhanced call quality monitoring, and automated topic detection for deeper sales insights. This led to more effective communication with customers, optimized operational efficiency, and improved customer service quality.